轻质碳酸钙(Light Calcium Carbonate)又称沉淀碳酸钙( Precipitated Calcium Carbonate,简称PCC)。轻质碳酸钙是用化学加工方法制得的。由于它的沉降体积(2.4-2.8mL/g)比用机械方法生产的重质碳酸钙沉降体积(1.1-1.9mL/g)大,因此被称为轻质碳酸钙。它的化学式为CaCO3,它与所有的强酸发生反应,生成和相应的钙盐(如氯化钙CaCl2),同时放出二氧化碳。在常温(25℃)下,轻质碳酸钙在水中的浓度积为8.7/1029、溶解度为0.0014;轻质碳酸钙水溶液的pH值为9.5~10.2;空气饱和轻质碳酸钙水溶液的pH值为8.0~8.6;轻质碳酸钙无毒、无臭、无刺激性,通常为白色,相对密度为2.7~2.9;沉降体积2.5ml/g以上,比表面积为5m2/g左右。

碳酸钙性状特点

白色粉末或无色结晶。无气味。无味。82.5℃分解为氧化钙和二氧化碳。 溶于稀酸而放出二氧化碳,不溶于及醇。有两种结晶,一种是正交晶体文石,一种是六方菱面晶体方解石。方解石,有刺激性。

a 颗粒形状规则,可视为单分散粉体,但可以是多种形状,如纺锤形、立方形、针形、链形、球形、片形和四角柱形。这些不同形状的碳酸钙可由控制反应条件制得。

b 粒度分布较窄。

c 粒径小,平均粒径一般为1-3μm。要确定轻质碳酸钙的平均粒径,可用三轴粒径中的短轴粒径作为表现粒径,再取中位粒径作为平均粒径。以后除说明外,平均粒径,即指平均短轴粒径。

轻质碳酸钙由于粒径小,表面能高,分子间力、静电作用、氢键、氧桥等引起碳酸钙粒子极易团聚,作为填料,会影响实际使用效果;另外碳酸钙表面有亲水性较强的-OH,呈碱性,是一种亲水性粉体,在高聚物中分散不均匀,因此应用中必须对其表面改性,降低表面能,增加表面活性基团,提高与聚合物界面的湿润性及与聚合物的相互作用性。

聚合物的物理性能受活化度的高低的影响,而活化度的高低,除了与改性剂有关,关键点还在于碳酸钙粒子是否真正分散。因此,碳酸钙的分散程度、改性效果的好坏,直接影响到其使用价值和应用领域。

碳酸钙表面改性简述

碳酸钙的表面改性方法主要是化学包覆,辅之以机械化学;使用的表面改性剂包括硬脂酸(盐),钛酸酯偶联剂,铝酸酯偶联剂、锆铝酸盐偶联剂以及无规聚丙烯,聚乙烯蜡等。

碳酸钙连续表面改性工艺

表面改性要借助设备来进行。常用的表面改性设备是SLG型连续粉体表面改性机、高速加热混合机以及涡流磨和流态化改性机等。

影响碳酸钙表面改性效果的主要因素是:表面改性剂的品种、用量和用法(即所谓表面改性剂配方);表面改性温度、停留时间(即表面改性工艺);表面改性剂和物料的分散程度等。其中,表面改性剂和物料的分散程度主要取决于表面改性机。

1、湿法改性常用药剂及工艺

湿法活化是将活化剂加入到溶剂中(如水中),将碳酸钙在其中进行搅拌使其表面包覆,最后再进行千燥,这一般在轻质碳酸钙或者纳米碳酸钙生产企业中完成。

碳酸钙颗粒经湿法改性处理后,其表面能降低,即使经压滤、干燥后形成二次粒子,仅形成结合力较弱的软团聚,有效地避免了干法改性中因化学键氧桥的生成而导致的硬团聚现象。此法是传统的碳酸钙表面处理方法,适用于水溶性的表面活性剂,该法的优点是包覆均匀,生产质量高。但干燥需要控制一定的温度和条件,有些表面处理剂不溶于水或在水中易分解,采用其它有机试剂又有成本和安全问题。

(1)硬脂酸(盐)表面活性剂

硬脂酸(盐)表面活性剂是碳酸钙改性常用表面处理剂之一,属于阴离子表面活性剂,分子一端长链烷基的结构和高分子结构类似,为亲油性基团,因而与高分子基料有较好的相容性,另一端为羧基等水溶性极性基团,可与碳酸钙等无机填料表面发生物理、化学吸附。

硬脂酸(盐)改性碳酸钙的具体反应机理是在碱性条件下,ROOH-与Ca2+等组分发生反应生成脂肪酸钙沉淀物,包覆于碳酸钙表面,使粒子的表面性质由亲水变为亲油。

岳林海等报道了以硬脂酸钠盐皂化液为介质,用共沉淀法制备复合碳酸钙。金瑞娣等研究了硬脂酸钠原位改性碳酸钙,在改性剂存在条件下,由氢氧化钙经过碳化制备改性碳酸钙,表明憎水性是由于硬脂酸钠以离子键的形式结合到碳酸钙表面形成难溶硬脂酸钙。

(2)磷酸盐和缩合磷酸表面活性剂

磷酸盐等脂肪酸(酯)用于碳酸钙的表面改性,是利用特殊结构的多聚磷酸酯(ADDP)对碳酸钙进行表面改性后,碳酸钙粒子表面疏水亲油,在油中的平均团聚粒径减小,将改性的碳酸钙填充于PVC塑料体系可显著改善塑料的加工性能和力学性能。混合使用硬脂酸和十二烷基苯磺酸钠对轻质碳酸钙进行表面处理,可以提高表面改性的效果。

(3)季胺盐类表面活性剂

季胺盐类是一种阳离子表面活性剂,它带正电的一端通过静电吸附在碳酸钙表面,另一端可以和高聚物进行交联,实现对碳酸钙的表面改性。

张智宏等利用新型阳离子表面活性剂十六烷基二甲基烯丙基氯化铵(CDAAC)对碳酸钙进行有机化改性,改性产品用作橡胶填充剂获得了良好效果。

2、干法改性常用药剂及工艺

干法改性工艺流程是把碳酸钙粉末放入高速混合机,再投入表面改性剂,借助混合机作用和一定的温度使改性剂均匀的吸附于碳酸钙粒子的表面,达到改性效果。

干法改性工艺的关键技术要求为:快速的混合以利于偶联剂均匀的包覆于碳酸钙粒子表面,合适的温度以利于反应和吸附的进行,碳酸钙干燥不含水分以免偶联剂先与水反应,而不是和碳酸钙表面的-OH反应,影响改性效果。

表面改性剂一般为偶联剂,偶联剂对碳酸钙进行表面改性,是利用偶联剂一端的基团可以与碳酸钙的表面发生反应,形成强有力的化学键合,而偶联剂的另一端可以与有机高分子发生某种化学反应或机械缠绕,从而把碳酸钙和有机高分子两种性质差异极大的材料紧密结合起来。目前市场上偶联剂主要有钛酸酯偶联剂、铝酸酯偶联剂、硼酸酯偶联剂和磷酸酯偶联剂等。

(1)钛酸酯偶联剂

所示为用钛酸酯偶联剂进行干法表面包覆改性的工艺流程,改性设备为高速加热混合机。

为了提高钛酸酯偶联剂与碳酸钙作用的均匀性,一般用惰性溶剂,如液体石蜡(白油)、石油醚、变压器油、无水乙醇等进行溶解和稀释。

钛酸酯偶联剂用量依碳酸钙的粒度和比表面积而定,一般为0.5%-3.0%。碳酸钙的干燥温度尽可能在偶联剂闪点以下,一般为100-120℃。钛酸酯偶联剂和惰性溶剂混合后以喷雾或滴加形式加入高速混合机中,这样可以更好地与碳酸钙颗粒分散混合,进行表面化学包覆。

如采用连续式的表面改性设备,如SLG连续式粉体表面改性机也可以不要用溶剂预先对钛酸酯偶联剂进行稀释。

用钛酸酯偶联剂处理后的碳酸钙,与聚合物分子有较好的相容性。同时,由于钛酸酯偶联剂能在碳酸钙分子和聚合物分子之间形成分子架桥,增强了有机高聚物或树脂与碳酸钙之间的相互作用,可显著提高热塑料复合材料等的力学性能,如冲击强度、拉伸强度、弯曲强度以及伸长率等。

用钛酸酯偶联剂表面包覆改性的碳酸钙和未处理的碳酸钙填料或硬脂酸(盐)处理的碳酸钙相比,各项性能均有明显提高。

(2)铝酸酯偶联剂

铝酸酯偶联剂已广泛应用于碳酸钙的表面处理和填充塑料制品,如PVC、PP、PE及填充母粒等制品的加工中。研究表明,经铝酸酯处理后的轻质碳酸钙在可使碳酸钙/液体石蜡混合体系的黏度显著下降,说明改性后的碳酸钙在有机介质中的分散性良好。

此外,表面改性活化后的碳酸钙可显著提高CaCO3/PP(聚丙烯)共混体系的力学性能,如冲击强度、韧性等。

(3)复合偶联改性

碳酸钙复合偶联体系是以碳酸钙偶联剂为基础,结合其他表面处理剂、交联剂、加工改性剂对碳酸钙表面进行综合技术处理的工艺。

复合偶联体系中偶联剂及各种助剂分述如下:

钛酸酯偶联剂。

硬脂酸。单独使用硬脂酸处理碳酸钙,效果不理想。单独使用偶联剂处理碳酸钙,成本较高。将硬脂酸与钛酸酯偶联剂结合使用,可以收到较好的协同效果。硬脂酸的加入基本上不影响偶联剂的偶联作用。同时,还可以减少偶联剂的用量,降低生产成本。

交联剂双马来酞亚胺。复合偶联剂体系中,采用交联剂可以使无机填料通过交联技术与基体树脂紧密地结合在一起,进一步提高复合材料的各项机械力学性能。这是“白艳华”或简单钛酸酯偶联剂表面处理难以达到的。

加工改性剂-80树脂等。各种加工改性剂主要是高分子化合物。加工改性剂可以显著改善树脂的熔体流动性、热变形性能及制品表面的光泽等。

为了使所有碳酸钙粒子表面都能包覆一层偶联剂分子,可以改喷雾或滴加的方法为乳液浸渍的办法,再经过滤,烘干,粉碎后与交联剂等助剂高速捏合(混合),均匀分散。

综上所述,碳酸钙复合偶联体系的主要成分是碳酸钙和钛酸酯偶联剂。钛酸酯偶联剂发挥了主要作用。在此基础上,再配合交联剂、表面活性剂、加工改性剂等可进一步增强碳酸钙填料的表面活性,增加填料的用量,提高复合材料的性能。

复合偶联改性后的碳酸钙填料为白色粉末,密度2.7-2.8g/cm3,pH值为7-8,疏水性能好。

经偶联剂处理后的碳酸钙(包括轻质碳酸钙和重质碳酸钙),除了用作硬质的聚氯乙烯的功能填料外,还广泛用做胶粘剂、油墨、涂料等的填料和颜料。

4、聚合物改性

采用聚合物对碳酸钙进行表面改性,可以改进碳酸钙在有机或无机相(体系)中的稳定性。这些聚合物包括低聚物、高聚物和水溶性高分子,如聚甲基丙烯酸甲酯(PMMA)、聚乙二醇、聚乙烯醇、聚马来酸、聚丙烯酸、烷氧基苯乙烯-苯乙烯磺酸的共聚物、聚丙烯、聚乙烯等。

聚合物表面包覆改性碳酸钙的工艺可分为两种,一是先将聚合物单体吸附在碳酸钙表面,然后引发其聚合,从而在其表面形成聚合物包覆层;二是将聚合物溶解在适当溶剂中,然后对碳酸钙进行表面改性,当聚合物逐渐吸附在碳酸钙颗粒表面上时排除溶剂形成包膜。这些聚合物定向吸附在碳酸钙颗粒表面,形成物理、化学吸附层,可阻止碳酸钙粒子团聚,改善分散性,使碳酸钙在应用中具有较好的分散稳定性。

母料填料是一种新型塑料填料。方法是按一定比例将填料和树脂母料混合,并添加一些表面活性剂,经过高剪切混合挤出,切粒而制成母粒填料。这种母料填料具有较好的分散性,与树脂结合力强,熔融均匀,添加量高,机械磨损小,应用方便。因此,广泛应用于打包带、编织袋、聚乙烯中空制品(管材、容器等)、薄膜等。根据基体树脂的不同,常用母料填料主要有无规聚丙烯碳酸钙母粒(APP母料)、聚乙烯蜡碳酸钙母粒和聚乙烯碳酸钙母粒填料等几种。

APP母料是以碳酸钙和无规聚丙烯为基本原料,以一定的比例配制,通过密炼、开炼、造粒生产。碳酸钙在和无规聚丙烯复合前须经表面活化处理。无规聚丙烯和活性碳酸钙的配

比一般为1:3-1:10。为了改善无规聚丙烯的加工成型性能,一般成型时加入部分等规聚丙烯或部分聚乙烯。无规聚丙烯和活性碳酸钙的配比决定了碳酸钙粒子表面包覆水平,从而最终影响APP母料的产品质量。

在APP母料这一体系中,碳酸钙粒子四周被无规聚丙烯包覆,即碳酸钙粒子均匀地分散在无规聚丙烯基料中。假设碳酸钙粒子为标准立方体或球状颗粒,其边长或直径分别为10μm、50μm、100μm,则可根据无规聚丙烯和碳酸钙的质量比计算出每一碳酸钙颗粒表面包覆无规聚丙烯的平均假想厚度。理论上,填充的碳酸钙越多越好,即假想厚度越小越好。但实际厚度取决于工艺设备及操作条件。

用聚乙烯蜡或聚乙烯代替无规聚丙烯作基料与活性碳酸钙填充复合即可制备聚乙烯蜡碳酸钙母料填料和聚乙烯碳酸钙母料填料。

5、等离子和辐射改性

采用感应耦合辉光放电等离子系统,并用氩(Ar)和高纯丙烯(C3H6)混合气体作为等离子体处理气体对重质碳酸钙(1250目)粉末进行低温等离子体改性结果表明,经Ar-C3H6混合气体处理的碳酸钙填料与聚丙烯(PP)有较好的界面翰合性。这是由于经改性后的碳酸钙颗粒表面存在一非极性有机层,因此降低了碳酸钙颗粒表面的极性,提高了与聚丙烯(PP)的相容性和亲和性。

6、无机表面改性

采用缩合磷酸(即偏磷酸或焦磷酸)对碳酸钙粉体进行表面改性,可克服碳酸钙粉体耐酸性差、表面pH值高等缺点。改性后产品的pH值为5.0-8.0(较表面处理前下降1.0-5.0),难溶于醋酸等弱酸中,耐酸性较好。

另外,在碳酸钙碳化过程中加入硫酸锌和水玻璃进行表面改性,所得产品应用于丁苯橡胶时,可改善其伸长率和撕裂强度。

干法改性工艺加工过程简单,生产设备投资和生产成本较低,出料后可直接进行包装,但与湿法比较,活化度欠佳,且很难对一次粒径的碳酸钙颗粒进行均匀的表面包覆,因此,干法活化工艺目前适用于填料级的碳酸钙改性处理,用于功能性纳米碳酸钙还有待进一步改进。

3、碳酸钙改性效果评价

改性碳酸钙效果的评价大致可以分为两大类:直接法和间接法。间接法是指将改性碳酸钙填料与应用体系,测定应用体系的应用性能。直接法是指测定改性碳酸钙的表面物理化学性质,如活化度、比表面积、吸油值、包覆量和表面结构、形貌等。

(1)活化度

无机填料一般相对密度较大,而且表面亲水,在水中自然沉降,而经表面改性处理的无机填料,表面由亲水变为憎水。这种憎水的细小颗粒,由于巨大的表面张力,在水中漂浮不沉。根据这一现象,提出活化度的概念,用ω表示。

ω=样品中漂浮部分的重量(g)/样品总重量(g)

ω从0-100%的变化过程,反映出改性碳酸钙表面活化程度由小到大。

测试方法按以下步骤,称取约5g试样,精确至0.01g,250ml分液漏斗中,加200ml水,以120次/min的速度往返振摇1min,轻放于漏斗架上,静置20-30min,待明显分层后一次性将下沉碳酸钙放入预先于105±5℃下恒重的(精确至0.001g)玻璃砂坩埚中,抽滤除水,置于恒温干燥箱中,于105±5℃下干燥至恒重,精确至0.001g。

(2)比表面积

表面改性处理过程除了能改善活性,也能有效阻止二次团聚。未改性纳米碳酸钙粒子之间易产生硬团聚,比表面积较小。表面改性后,碳酸钙粒子团聚现象得到很大改善,比表面积明显增大。比表面积越大,表明粒子的分散性和分散程度越好。这是因为改性纳米碳酸钙粒子表面包覆了一层改性剂,表面能降低,使得粒子处于稳定状态。即使一些粒子团聚在一起,其相互之间的团聚也是软团聚,这种团聚较易打开。

(3)吸油值

吸油值与碳酸钙颗粒的大小、分散,凝聚程度、比表面积以及颗粒的表面性质有关。吸油值是影响改性碳酸钙的实际应用的重要性质,尤其是对于涂料、塑料、油墨行业。如果吸油值较大,应用于涂料、油墨行业会使黏度增大,应用于塑料行业会增大增塑剂的消耗量,因此吸油值宜低。